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Goals and Objectives Hypotheses

Use satellite data to understand precipitation and heating during the lifecycle of tropical easterly General: The interaction between moist convection and TEWs is a major source of weather and climate model bias
waves (TEWs) to improve model biases in the representation of these waves. through biases in latent heating.

Objective 1: Determine and analyze the amount and structure of convection and precipitation over the lifecycle of Precipitation: The precipitation maximum (and convective/stratiform structure) is a function of the lifecycle of the
TEWSs across the tropics. wave as opposed to its spatial location. The maximum moves ahead of the trough as the wave matures.
Objective 2: Examine the latent heating profiles within TEWs and their relationship with TEW intensity and Latent Heating: The vertical structure will become more “top-heavy” as the low-level curvature vorticity and
evolution. precipitation increase for maturing TEWs with an associated increase in stratiform rain fraction.

Objective 3: Diagnose variability in TEW precipitation processes spatially (region-to-region) and temporally (year-

) Spatial Variability: The regional differences in the relationship between precipitation and wave circulation are due
to-year).

to inconsistencies in wave sampling methods, rather than physical differences in wave activity across basins.

Objective 4: Identify and understand discrepancies in latent heating profiles of TEWs in MERRA-2 reanalysis and
the NASA-GISS climate model.

Energy Budget: To simulate TEWs accurately the correct phasing and structure of precipitation in TEWs is vital to
produce the correct energy budget contributions from latent heating.
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